SMT 란 무엇입니까??

SMT (표면 실장 기술) 부품 배치 시스템, 일반적으로 불린다 픽앤 플레이스 머신 또는 P&추신, 아르 로봇 배치하는 데 사용되는 기계 표면 실장 장치 (SMD) 에 인쇄 회로 기판 (PCB). 그들은 고속에 사용됩니다, 광범위한 전자 부품의 고정밀 배치, 처럼 capacitors, 저항기, integrated circuits onto the PCBs which are in turn used in computers, consumer electronics as well as industrial, medical, automotive, military and telecommunications equipment. Similar equipment exists for through hole components.This type of equipment is sometimes also used to package microchips using the flip chip method.

조작[edit]

The placement equipment is part of a larger overall machine that carries out specific programmed steps to create a PCB Assembly. Several sub-systems work together to pick up and correctly place the components onto the PCB. These systems normally use pneumatic suction cups, attached to a plotter-like device to allow the cup to be accurately manipulated in three dimensions. Additionally, each nozzle can be rotated independently.

Component feeds

Surface mount components are placed along the front (and often back) faces of the machine. Most components are supplied on paper or plastic tape, in tape reels that are loaded onto feeders mounted to the machine. Larger integrated circuits (ICs) are sometimes supplied arranged in trays which are stacked in a compartment. More commonly ICs will be provided in tapes rather than trays or sticks. Improvements in feeder technology mean that tape format is becoming the preferred method of presenting parts on an SMT machine.

Early feeder heads were much bulkier, and as a result it was not designed to be the mobile part of the system. Rather, the PCB itself was mounted on a moving platform that aligned the areas of the board to be populated with the feeder head above

Conveyor belt

Through the middle of the machine there is a conveyor belt, along which blank PCBs travel, and a PCB clamp in the center of the machine. The PCB is clamped, and the nozzles pick up individual components from the feeders/trays, rotate them to the correct orientation and then place them on the appropriate pads on the PCB with high precision. High end machines can have multiple conveyors to produce multiple same or different kind of products simultaneously.

검사

As the part is carried from the part feeders on either side of the conveyor belt to the PCB, it is photographed from below. Its silhouette is inspected to see if it is damaged or missing (was not picked up), and the inevitable registration errors in pickup are measured and compensated for when the part is placed. For example, if the part was shifted 0.25 mm and rotated 10° when picked up, the pickup head will adjust the placement position to place the part in the correct location. Some machines have these optical systems on the robot arm and can carry out the optical calculations without losing time, thereby achieving a lower derating factor. The high end optical systems mounted on the heads can also be used to capture details of the non-standard type components and save them to a database for future use. In addition to this, advanced software is available for monitoring the production and interconnect database — of the production floor to that of supply chain — in real time. ASM provides an optional feature for increasing accuracy while placing LED components on a high end product where in the optical center of the LED is critical rather than the calculated mechanical center based on the component’s lead structure.The special camera system measures both physical and optical center and makes the necessary adjustments before placement.

A separate camera on the pick-and-place head photographs fiducial marks on the PCB to measure its position on the conveyor belt accurately. Two fiducial marks, measured in two dimensions each, usually placed diagonally, let the PCB’s orientation and thermal expansion be measured and compensated for as well. Some machines are also able to measure the PCB shear by measuring a third fiducial mark on the PCB.